1 2 циклопропан

Содержание

Строение циклопропана

В молекуле циклопропана все атомы углерода расположены в одной плоскости.

При таком расположении атомов углерода в цикле валентные углы должны быть равны 600, а величина их отклонения от нормального валентного угла (109028 ) должна составлять: α = (109028 – 600) : 2 = 24044 . Это наиболее напряженная циклическая система.

Однако в действительности, валентные углы между атомами углерода в циклопропановом цикле составляет 1060. Это объясняется тем, что σ-связи между атомами углерода в циклопропане отличаются от обычных σ-связей, образующихся при перекрыванииsp3-гибридных орбиталей в алканах.

При образовании углерод-углеродных связей в циклопропановом цикле происходит только частичное перекрывание sp3-гибридных орбиталей, направленное не вдоль прямой, соединяющей центры связанных углеродных атомов, а за пределами плоскости циклопропана, что приводит к образованию изогнутых орбиталей или так называемыхбанановых илиτ- (греч.»тау») связей.

Образование банановых (или τ-) связей в циклопропане приводит к уменьшению углового напряжения в цикле, так как угол между осями двух электронных облаков увеличивается от 600до 1060, а сами τ-связи приобретают частично ненасыщенный характер и по прочности они занимают промежуточное положение между σ- и π-связями.

Этим объясняется склонность циклопропана к реакциям присоединения. О частичном ненасыщенном характере атомов углерода в молекуле циклопропана свидетельствует также повышенная протонная подвижность атомов водорода.

Строение циклобутана и циклопентана

В циклобутане и особенно в циклопентане угловое (ангулярное) напряжение, связанное с отклонением валентных углов атомов углерода от нормального валентного (109028), значительно ниже.

При расположении всех атомов углерода четырех- и пятичленных циклов в одной плоскости отклонение валентных углов составляет соответственно:

— для циклобутана — (109028 — 900) : 2 = 9044

— для циклопентана — (109028 — 1080) : 2 = 0044

Однако, в действительности, молекулы циклобутана и циклопентана не являются плоскими, так как в плоских структурах все атомы водорода находятся в заслоненном состоянии, что приводит к появлению торсионного напряжения и уменьшению стабильности молекул.

Для снижения торсионного напряжения молекулы циклобутана и циклопентана принимают неплоские конформации, в которых благодаря силам отталкивания между атомами водорода один из атомов углерода в циклобутане или два атома углерода в циклопентане непрерывно выходят из плоскости циклов.

Поэтому кольца циклобутана и циклопентана как бы находятся в постоянном волнообразном движении, при котором происходит быстрое превращение одной конформации в другую:

— для циклобутана:

— для циклопентана:

В конформации «кресло» 6 атомов водорода перпендикулярны усредненной плоскости кольца и называются аксиальными (a-), а 6 других находятся близко к этой условной плоскости и называются экваториальными (e-). Если заместить один из водородов на алкильную или какую-нибудь функциональную группу, она может находиться в экваториальном или аксиальном положении. При комнатной температуре существует единственный циклогексан, а не два изомера. Причина этого – быстрая инверсия цикла, в результате которой метильная группа из аксиальной становится экваториальной.

Рис. 16.3. Инверсия метилциклогексана

Циклопентан по Байеру практически не имеет углового напряжения. Однако даже он существует не в планарной форме, т.к. в плоской молекуле все атомы водорода будут находиться в заслоненной конформации, что приведет к заметному торсионному напряжению. Энергетически более выгодно существование циклопентана в виде так называемого «конверта», в котором 4 атома углерода находятся в одной плоскости, а пятый выходит из нее.

Рис. 16.4. Конформационные изменения циклопентана

Циклобутан также неплоский, он представляет собой два равносторонних треугольника, соединенных по одной из сторон и располагающихся в разных плоскостях. Причина выхода двух атомов углерода из плоскости все в той же заслоненной конформации метиленовых групп, которая энергетически невыгодна.

Рис. 16.5. Конформационные изменения циклобутана

В циклопропане атомы углерода не могут находиться в разных плоскостях (геометрическое место трех точек – плоскость). Молекулу можно представить как правильный треугольник. Однако экспериментальные данные показывают, что циклопропан ведет себя так, как если бы угол между С-С связями составлял 102о. Невозможно представить себе правильный треугольник с внутренними углами не равными 60о.

Перекрывание атомных гибридизованных орбиталей в молекуле циклопропана показано на рис. 16.6. Как видно, связь образуется не по линии, связывающей центры атомов. Такие связи называют «банановыми» или изогнутыми. По своим характеристикам они занимают промежуточное положение между s- и p-связями. Этот факт объясняет частичную ненасыщенность циклопропана.

Рис. 16.6. Перекрывание атомных орбиталей в молекуле циклопропана

В результате в молекулах циклобутана и циклопентана уменьшается «заслоненность» атомов водородов у соседних углеродных атомов, что приводит к снижению торсионного напряжения, за счет появления небольшого углового (ангулярного) напряжения.

CHEMEGE.RU

Циклоалканы – это предельные (насыщенные) углеводороды, которые содержат замкнутый углеродный цикл.

Общая формула циклоалканов CnH2n, где n≥3.

Строение, номенклатура и изомерия циклоалканов

Химические свойства циклоалканов

Получение циклоалканов

Строение циклоалканов

Атомы углерода в молекулах циклоалканов находятся в состоянии sp3-гибридизации и образует четыре σ-связи С–С и С–Н. В зависимости от размеров цикла меняются валентные углы.

В малых циклах (циклопропан и циклобутан) валентные углы между связями С–С сильно отличаются от валентных углов между связями С–С в алканах (109о35′). Поэтому в малых циклах возникает напряжение, которое приводит к высокой реакционной способности таких циклоалканов.

Самый простой циклоалкан — циклопропан, представляет, по сути, плоский треугольник.

σ-Связи в циклопропане называют «банановыми». Они не лежат вдоль оси, соединяющей ядра атомов, а отклоняются от неё, уменьшая напряжение в молекуле циклопропана.

По свойствам «банановые» связи напоминают π-связи. Они легко разрываются.

Поэтому циклопропан очень легко вступает в реакции присоединения с разрывом углеродного цикла.

Остальные циклоалканы имеют неплоское строение. Молекула циклобутана имеет перегиб по линии, соединяющей первый и третий атомы углерода в кольце:

Циклобутан также вступает в реакции присоединения, но угловое напряжение в циклобутане меньше, чем в циклопропане, поэтому реакции присоединения к циклобутану протекают сложнее.

Большие циклы имеют более сложное, неплоское строение, вследствие чего угловое напряжение в молекулах больших циклоалканов почти отсутствует.

Циклоалканы с большим циклом не вступают в реакции присоединения. Для них характерны реакции замещения.

Строение циклопентана также неплоское, молекула представляет собой так называемый «конверт».

Молекула циклогексана не является плоским многоугольником и принимает различные конформации, имеющие названия «кресло» и «ванна»:

«кресло» «ванна»

Изомерия циклоалканов

Для циклоалканов характерна структурная изомерия, связанная с разным числом углеродных атомов в кольце, разным числом углеродных атомов в заместителях и с положением заместителей в цикле.

  • Изомеры с разным числом атомов углерода в цикле отличаются размерами углеродного цикла.

Например.

Изомеры с разным числом углеродных атомов в цикле – это этилциклопропан и метилциклобутан с общей формулой С5Н10

Этилциклопропан Метилциклобутан
  • Изомеры с разным числом атомов углерода в заместителях отличаются строением заместителей у одинакового углеродного цикла.

Например.

Структурные изомеры с различным числом углеродных атомов в заместителях – 1-метил-2-пропилциклопентан и 1,2-диэтилциклопентан

1-Метил-2-пропилциклопентан 1,2-Диэтилциклопентан
  • Изомеры с разным положением одинаковых заместителей в углеродном цикле.

Например.

1,1-Диметилциклогексан 1,2-Диметилциклогексан
  • Межклассовая изомерия: циклоалканы изомерны алкенам.

Например.

Формуле С3Н6 соответствуют циклопропан и пропен.

Циклопропан Пропилен

Геометрическая (цис-транс-) изомерия

У циклоалканов с двумя заместителями, расположенными у соседних атомов углерода в цикле цис-транс-изомерия обусловлена различным взаимным расположением в пространстве заместителей относительно плоскости цикла.

В цис-изомерах заместители находятся по одну сторону от плоскости цикла, в транс-изомерах – заместители расположены по разные стороны.

Например.

В молекуле 1,2-диметилциклопропана две группы СН3 могут находиться по одну сторону от плоскости цикла (цис-изомер) или по разные стороны (транс-изомер):

цис-1,2-Диметилциклопропан транс-1,2-Диметилциклопропан

Для 1,1-диметилциклопропана цис-транс-изомерия не характерна.

Номенклатура циклоалканов

В названиях циклоалканов используется префикс -ЦИКЛО.

Название циклоалкана Структурная формула
Циклопропан
Циклобутан
Циклопентан
Циклогексан

Название циклоалканов строится по следующим правилам:

1. Цикл принимают за главную углеродную цепь. При этом считают, что углеводородные радикалы, которые не входят в главной цепь, являются в ней заместителями.

2. Нумеруют атомы углерода в цикле так, чтобы атомы углерода, которые соединены с заместителями, получили минимальные возможные номера. Причем нумерацию следует начинать с более близкого к старшей группе конца цепи.

3. Называют все радикалы, указывая впереди цифры, которые обозначают их расположение в главной цепи.

Для одинаковых заместителей эти цифры указывают через запятую, при этом количество одинаковых заместителей обозначается приставками ди- (два), три- (три), тетра- (четыре), пента- (пять) и т.д.

Например, 1,1-диметилциклопропан или 1,1,3-триметилциклопентан.

4. Названия заместителей со всеми приставками и цифрами располагают в алфавитном порядке.

Например: 1,1-диметил-3-этилциклопентан.

5. Называют углеродный цикл.

Химические свойства циклоалканов

Циклоалканы с малым циклом (циклопропан, циклобутан и их замещенные гомологи) из-за большой напряженности в кольце могут вступать в реакции присоединения.

1. Реакции присоединения к циклоалканам

Чем меньше цикл и чем больше угловое напряжение в цикле, тем легче протекают реакции присоединения. Способность вступать в реакции присоединения уменьшается в ряду: циклопропан > циклобутан > циклопентан.

1.1. Гидрирование циклоалканов

С водородом могут реагировать малые циклы, а также (в жестких условиях) циклопентан. При этом происходит разрыв кольца и образование алкана.

Циклопропан и циклобутан довольно легко присоединяют водород при нагревании в присутствии катализатора:

Циклопентан присоединяет водород в жестких условиях:

Бромирование протекает более медленно и избирательно.

Циклогексан и циклоалканы с большим число атомов углерода в цикле с водородом не реагируют.

1.2. Галогенирование циклоалканов

Циклопропан и циклобутан реагируют с галогенами, при этом тоже происходит присоединение галогенов к молекуле, сопровождающееся разрывом кольца.

Например. Циклопропан присоединяет бром с образованием 1,3-дибромпропана:

1.3. Гидрогалогенирование

Циклопропан и его гомологи с алкильными заместителями у трехчленного цикла вступают с галогеноводородами в реакции присоединения с разрывом цикла.

Например, циклопропан присоединяет йодоводород.

Присоединение галогеноводородов к гомологам циклопропана с заместителями у трехатомного цикла (метилциклопропан и др.) происходит по правилу Марковникова.

Например, при присоединении бромоводорода к метилциклопропану преимущественно образуется 2-бромбутан

2. Реакции замещения

В больших циклах (циклопентане, циклогексане) благодаря неплоскому строению молекул не возникает угловое напряжение.

Поэтому большие циклы гораздо более устойчивы, чем малые, и реакции присоединения с разрывом связей С-С для них не характерны. В химических реакциях они ведут себя подобно алканам, вступая в реакции замещения без разрыва кольца.

2.1. Галогенирование

Галогенирование циклопентана, циклогексана и циклоалканов с большим количеством атомов углерода в цикле протекает по механизму радикального замещения.

Например, при хлорировании циклопентана на свету или при нагревании образуется хлорциклопентан

При хлорировании метилциклопентана замещение преимущественно протекает у третичного атома углерода:

2.2. Нитрование циклоалканов

При взаимодействии циклоалканов с разбавленной азотной кислотой при нагревании образуются нитроциклоалканы.

Например, нитрование циклопентана.

2.3. Дегидрирование

При нагревании циклоалканов в присутствии катализаторов протекает дегидрирование – отщепление водорода.

Циклогексан и его производные дегидрируются при нагревании и под действием катализатора до бензола и его производных.

Например, бензол образуется при дегидрировании циклогексана.

Например, при отщеплении водорода от метилциклогексана образуется толуол.

3. Окисление циклоалканов

3.1. Горение

Как и все углеводороды, алканы горят до углекислого газа и воды. Уравнение сгорания циклоалканов в общем виде:

CnH2n + 3n/2O2 → nCO2 + nH2O + Q

Например, горение циклопентана.

2C5H10 + 15O2 → 10CO2 + 10H2O + Q

3.2. Окисление

При окислении циклогексана азотной кислотой или в присутствии катализатора образуется адипиновая (гександиовая) кислота:

1. Дегидрирование алканов

Алканы с длинным углеродным скелетом, содержащие 5 и более атомов углерода в главной цепи, при нагревании в присутствии металлических катализаторов образуют циклические соединения.

При этом протекает дегидроциклизация – процесс отщепления водорода с образованием замкнутого цикла.

Пентан и его гомологи, содержащие пять атомов углерода в главной цепи, при нагревании над платиновым катализатором образуют циклопентан и его гомологи:

Алканы с углеродной цепью, содержащей 6 и более атомов углерода в главной цепи, при дегидрировании образуют устойчивые шестиатомные циклы, т. е. циклогексан и его гомологи, которые далее превращаются в ароматические углеводороды.

Гексан при нагревании в присутствии оксида хрома (III) в зависимости от условий может образовать циклогексан и потом бензол:

Гептан при дегидрировании в присутствии катализатора образует метилциклогексан и далее толуол:

Дегидроциклизация алканов — важный промышленный способ получения циклоалканов.

2. Гидрирование бензола и его гомологов

При гидрировании бензола при нагревании и в присутствии катализатора образуется циклогексан:

При гидрировании толуола образуется метилциклогексан:

Этим способом можно получить только циклогексан и его гомологи с шестичленным кольцом.

3. Дегалогенирование дигалогеналканов

При действии активных металлов на дигалогеналканы, в которых между атомами галогенов находится три и более атомов углерода.

Например, 1,4-дибромбутан реагирует с цинком с образованием циклобутана

Таким образом можно синтезировать циклоалканы заданного строения, в том числе циклоалканы с малыми циклами (С3 и С4).

Особенности химического и электронного строения циклоалканов

  1. Строение циклоалканов
  2. Гомологический ряд циклоалканов
  3. Изомерия и номенклатура циклоалканов
  4. Физические свойства циклоалканов
  5. Химические свойства циклоалканов
  6. Задания для самопроверки

В отличие от предельных углеводородов, характеризующихся наличием открытых углеродных цепей, существуют углеводороды с замкнутыми цепями (циклами). По своим свойствам они напоминают обычные предельные углеводороды алканы (парафины), отсюда и произошло их название – циклоалканы (циклопарафины). Общая формула гомологического ряда циклоалканов CnH2n, то есть циклоалканы изомерны этиленовым углеводородам. Представителями этого ряда соединений являются циклопропан, циклобутан, циклопентан, циклогексан.

Циклоалканы

Циклопропан

Циклобутан

Циклопентан

Циклогексан

Очень часто в органической химии структурные формулы перечисленных циклоалканов изображают без символов C и H простыми геометрическими фигурами.

Гомологический ряд циклоалканов

Общая формула гомологического ряда циклоалканов CnH2n. Точно такой же формулой описывается гомологический ряд алкенов. Из чего следует, что каждому циклоалкану изомерен соответствующий алкен. Это пример так называемой «межклассовой» изомерии.

Гомологический ряд циклоалканов

Изомерия и номенклатура циклоалканов

1) Для циклоалканов как и для всех классов органических соединений, характерна изомерия углеродного скелета (структурная изомерия). Структурная изомерия для циклоалканов, во-первых, обусловлена размером цикла. Так, существует два циклоалкана формулы С4Н8: циклобутан и метилциклопропан. Во-вторых, такая изомерия обусловливается положением заместителей в цикле (например, 1,1 и 1,2-диметилбутан).

а) Изомерией кольца:

а) Изомерия боковых цепей:

2) Изомерия положения заместителей в кольце:

3) Межклассовая изомерия с алкенами:

4) Пространственная изомерия. Отсутствие свободного вращения вокруг связей С-С в цикле создает предпосылки для существования пространствен­ных изомеров у некоторых замещенных циклоалканов. Например, в молекуле 1,2-диметилциклопропана две группы СН3 могут находиться по одну сторону от плоскости цикла (цис-изомер) или по разные стороны (транс-изомер):

По размеру цикла циклоалканы делятся на ряд групп, из которых мы рассмотрим малые (С3, С4) и обычные (С5-С7) циклы.

По правилам международной номенклатуры в циклоалканах главной считается цепь углеродных атомов, образующих цикл. Название строится по названию этой замкнутой цепи с добавлением приставки «цикло-» (циклопропан, циклобутан, циклопентан, циклогексан и т.д.). При наличии в цикле заместителей нумерацию атомов углерода в кольце проводят так, чтобы ответвления получили возможно меньшие номера. Так, соединение следует назвать 1,2-диметилциклобутан, а не 2,3-диметилциклобутан, или 3,4-диметилциклобутан.

Структурные формулы циклоалканов обычно записывают в сокращенном виде, используя геометрическую форму цикла и опуская символы атомов углерода и водорода.

Физические свойства циклоалканов

При обычных условиях первые два члена ряда (С3 — С4) — газы, (С5 — С11) — жидкости, начиная с С12 — твёрдые вещества. Температуры кипения и плавления циклоалканов выше, чем у соответствующих алканов. Циклоалканы в воде практически не растворяются. При увеличении числа атомов углерода возрастает молярная масса, следовательно, увеличивается температура плавления.

Свойства сильно зависят от размера цикла, определяющего его устойчивость.

Трех- и четырехчленные циклы (малые циклы), являясь насыщенными, тем не менее, резко отличаются от всех остальных предельных углеводородов. Валентные углы в циклопропане и циклобутане значительно меньше нормального тетраэдрического угла 109°28’, свойственного sp3-гибридизованному атому углерода.

Это приводит к большой напряженности таких циклов и их стремлению к раскрытию под действием реагентов. Поэтому циклопропан, циклобутан и их производные вступают в реакции присоединения, проявляя характер ненасыщенных соединений. Легкость реакций присоединения уменьшается с уменьшением напряженности цикла в ряду:

циклопропан > циклобутан >> циклопентан

Наиболее устойчивыми являются 6-членные циклы, в которых отсутствуют угловое и другие виды напряжения.

· Малые циклы (С3 – С4) довольно легко вступают в реакции гидрирования:

· Циклопропан и его производные присоединяют галогены и галогеноводороды:

Циклопропан и его гомологи реагируют с галогенводородами с раскрытием цикла в соответствии с правилом Марковникова.

Когда несимметричный алкен соединяется с галогеноводородной кислотой, галоген присоединяется к атому углерода, содержащему меньше атомов водорода.

В других циклах (начиная с С5) угловое напряжение снимается благодаря неплоскому строению молекул. Поэтому для циклоалканов (С5 и выше) вследствие их устойчивости характерны реакции, в которых сохраняется циклическая структура, т.е. реакции замещения.

Реакция идет по цепному радикальному механизму (аналогичному замещению в алканах).

Эти соединения, подобно алканам, вступают также в реакции дегидрирования, например дегидрирование циклогексана и его алкильных производных:

А также окисления в присутствии катализатора, например окисление циклогексана:

Окисление циклоалканов

Подытожив химические свойства циклоалканов можно записать их химические свойства так:

химические свойства циклоалканов

Справочный материал для прохождения тестирования:

Таблица Менделеева Таблица растворимости

Химические свойства циклопропана и его производных

Среди циклоалканов циклопропан занимает особое место. С одной стороны его свойства крайне схожи со свойствами линейных алканов: циклопропан устойчив к действию окислителей и прочих реакционно способных веществ.

Но с другой стороны, в связи с увеличением $\pi$-характера $C-C$-связей в циклопропане, в некоторых случаях он может реагировать как алкен. Например, он подвергается гидрогалогенированию с минеральными кислотами с получением линейных алкилгалогенидов. Замещенные циклопропана также реагируют, следуя правилу Марковникова.

Рисунок 1.

Особые свойства циклопропанового кольца

Циклопропановое кольцо настолько стабильно к действию окислителей, что алкилциклопропаны реагируют только по $\alpha$-положению без раскрытия цикла. Наиболее наглядным примером такого рода реакции является озонолиз тетраспироциклопропана, приводящий к моно- и диспирокетонам.

Рисунок 2.

Аналогично окислительный озонолиз транс-1,2-дифенилциклопропана дает транс-циклопропан-1,2-дикарбоновую кислоту:

Рисунок 3.

Циклопропан является наиболее сильной $C-H$ кислотой из всех циклоалканов. Арилциклопропаны отщепляют протон уже при действии раствора трет-бутилата калия в ДМСО.

Ничего непонятно?

Попробуй обратиться за помощью к преподавателям

Рисунок 4.

Свойства циклопропана, характерные и прочим циклоалканам

  1. Гидрирование циклопропана (каталитический гидрогенолиз).

    Напряжение цикла циклопропана проявляется во многих его реакциях. В частности он подвергается каталитическому гидрогенолизу с образованием пропана, однако при жестких условиях по сравнению с гидрогенолизом этилена и пропилена.

    Рисунок 5.

  2. Реакции присоединения. К реакциям присоединения среди циклоалканов в первую очередь склоннен именно циклопропан (в меньшей мере также и циклобутан, который вступает в них в более жестких условиях):

    Рисунок 6.

    При действии галогеноводородов на производные циклопропана реакция проходит по правилу Марковникова:

    Рисунок 7.

  3. Реакции замещения в циклопропане. Несмотря на то, что реакции замещения более характерны для пяти-, шестичленных и высших циклов, циклопропан и и его производные также вступают в этот тип реакций. Например, при хлорировании на свету они образуют смесь моно- и дихлоропроизводных:

    Рисунок 8.

    Кроме того, в зависимости от условий при реакции с хлором протекать реакция с раскрытием цикла

    Рисунок 9.

    При аналогичной реакции с бромом образуется только 1,3-дибромпропан.

    Рисунок 10.

  4. Изомеризация циклопропана. Для циклоалканов характерна изомеризация цикла с его расширением или сужением. Только циклопропан изомеризуется при нагревании в присутствии некоторых металлов с расщеплением до пропилена:

    Рисунок 11.

    Изомеризация циклопропана происходит также при реакциях замещения, причем цикл сужается или расширяется, как правило, на один атом углерода (М. Кижнер, В. Марковников):

    Рисунок 12.

Реакции с солями ртути

Производные циклопропана реагируют с солями ртути. Эти реакции, были открыты Р. Я. Левиной, и напоминают оксимеркурирование алкенов. Направление раскрытия цикла также как и в случае прочих реакций присоединения соответствует правилу Марковникова.

Рисунок 13.

Метиленциклопропан

Метиленциклопропан представляет собой органическое соединение с формулой $(CH_2)_2CCH_2$.

Рисунок 14.

Это бесцветный легко сжижаемый газ, который используется в качестве реагента в органическом синтезе.

Будучи напряженной и ненасыщенной молекула метиленциклопропана претерпевает множество реакций, особенно в присутствии металлических катализаторов. Например, метиленциклопропаны могут быть преобразованы в циклобутеноны в присутствии платинового катализатора. Этот процесс можно рассматривать аналогично расширению цикла самого циклопропана и прочих его производных:

Рисунок 15.

>Циклопропан>Состав

Бесцветный легковоспламеняющийся газ, который при комнатной температуре и давлении 5 атм. переходит в жидкое состояние.

>Форма выпуска

Стальные баллоны оранжевого цвета объемом 1 л и 2 л под давлением 5 атм. Надпись выполняется черным цветом.

>Фармакологическое действие

Общее анестезирующее, средство для ингаляционного наркоза.

Фармакодинамика и фармакокинетика

Фармакодинамика

Циклопропан — бесцветный газ, обладающий высокой анальгетической и наркозной активностью.

Химические свойства

Циклопропан является представителем углеводородов с замкнутыми цепями. Структурная формула Циклопропана:

При замыкании углеродных атомов в кольцо значительно возрастает выраженность наркотического действия. И доказательством этого служит большая токсичность циклопропана (а также циклогексана, циклопентана) по сравнению с метановыми углеводородами. В молекуле циклопропана присутствуют непрочные связи и для него характерны реакции присоединения. Например, взаимодействие Циклопропан — НBr. Ниже представлена цепочка Циклопропан — 1-бромпропан:

Циклопропан оказывает выраженный наркотический эффект (сильнее закиси азота в 7 раз). Вдыхание 10% его смеси с кислородом вызывает хирургическую стадию наркоза. Отмечается быстрый ввод в наркоз и быстрое пробуждение. Наркоз хорошо управляемый.

Оказывает также миорелаксирующий эффект. При этом не раздражает слизистые, не оказывает токсического влияния на печень, незначительно снижает диурез. Обладает выраженным ваготропным действием, поэтому для профилактики брадикардии обязательно вводится Атропин.

Во время наркоза наступает кратковременная гипергликемия, не столь выраженная как при применении эфира. В связи с чем, может применяться при сахарном диабете, заболеваниях дыхательных путей и паренхиматозных органов. Однако наркоз с его применением не нашёл широкого распространения ввиду угнетения дыхания, развития артериальной гипотензии.

Обладает кардиотоксическим действием — усиливает чувствительность миокарда к эпинефрину (норэпинефрину) и при их сочетанном применении вызывает выраженную тахикардию, развитие различных нарушений ритма и фибрилляцию желудочков.

Его смеси с закисью азота и кислородом могут взрываться в присутствии электрической искры. В настоящее редко используется.

Фармакокинетика

Введение в наркоз — 3-5 мин, без стадии возбуждения. Быстро вызывает стадию глубокого наркоза.

Не разрушается в организме, в неизменном виде выделяется практически полностью в течение 10 мин.

Показания к применению

  • вводный и основной наркоз при акушерско-гинекологических операциях в комбинации с кислородом, другими средствами для наркоза и миорелаксантами;
  • кратковременные вмешательства при «малых» операциях;
  • операции в пожилом возрасте.

>Противопоказания

Заболевания, сопровождающиеся нарушением предсердно-желудочковой проводимости.

>Побочные действия

Часто встречаются головная боль, рвота в послеоперационном периоде, парез кишечника.

Инструкция по применению (Способ и дозировка)

Применяют только в смеси с кислородом в различных системах (закрытой и полузакрытой, реже — полуоткрытой) наркозных аппаратов, имеющих дозиметры.

Вдыхание этого средства концентрации 20-30 об.% вызывает глубокий наркоз. Для поддержания наркоза достаточно 15 об.%. Вдыхание его через наркозную маску не вызывает неприятных ощущений. Пациенты засыпают без возбуждения. Подача кислорода производится непрерывно, и еще 5 мин. после прекращения подачи наркоза.

Для уменьшения отрицательного действия этого средства для наркоза и достижения оптимального обезболивания применяется смесь: закись азота — 1 часть, циклопропан — 0,4 части, кислород — 2 части, которая подается полузакрытым способом после вводного наркоза тиопентал-натрием. Во избежание гипоксии подачу кислорода прекращают в последнюю очередь. Использование такой смеси уменьшает посленаркозные осложнения. В связи с быстрым пробуждением, еще до окончания операции вводится анальгетик.

>Передозировка

Проявляется симптомами: остановка дыхания, остановка сердца.

Лечение: симптоматическая терапия, поддержание жизненных функций организма.

>Взаимодействие

Противопоказано вводить Адреналин и Норадреналин.

>Условия продажи

Отпускается медицинским учреждениям.

>Условия хранения

В прохладных местах с отсутствием источников огня.

>Срок годности

2 года со дня ввода баллона в эксплуатацию.

>Аналоги

Триметилен, Фторотан, Трихлорэтилен.

Отзывы

Общие анестетики делятся на ингаляционные и неингаляционные. Растворы неингаляционных анестетиков вводятся внутривенно, их концентрацией управлять трудно, но они имеют преимущество — отсутствует стадия возбуждения при их применении.

Современный наркоз начинается с внутривенного введения неингаляционного анестетика. Далее переходят на один из ингаляционных анестетиков или их комбинацию, которая позволяет уменьшить токсические эффекты.

Ингаляционные анестетики представлены легко испаряющимися (летучими) жидкостями и газами, среди которых — Циклопропан. Подаются через наркозный аппарат и их концентрацией легко управлять. В настоящий момент Фторотан, имея хорошие наркотизирующие свойства и безопасность применения, вытеснил ранее применявшийся Циклопропан.

В стоматологии Циклопропан применялся вообще очень редко по некоторым причинам. Он образует воспламеняющиеся смеси и применять его крайне опасно в условиях использования бормашины и приборов, дающих искру. Кроме того, он повышает возбудимость слизистой дыхательных путей и при операциях в полости рта, на тканях ротоглотки и гортани на фоне его применения возникает ларингоспазм/бронхоспазм.

Цена, где купить

В настоящий момент Циклопропана нет в наличии в аптеках и интернет-аптеках городов России. Есть несколько компаний, занимающихся реализацией химической продукции для научных лабораторий, фармацевтики и медицины. На их сайтах можно сделать заказ, оставив свой запрос.

Закладка Постоянная ссылка.

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *