Глобула белка

Классификация белков. Глобулярные и фибриллярные белки.Простые и сложные белки.

Обширный класс белковых веществ в зависимости от химического состава делят на простые и сложные белки.Простые белкипостроены из остатков аминокислот и при гидролизе распадаются соответственно только на свободные аминокислоты.

Сложные белки– это двухкомпонентные белки, которые состоят из какого-либо простого белка и небелкового компонента, называемого простетической группой. При гидролизе сложных белков, помимо свободных аминокислот, освобождается небелковая часть или продукты еераспада.

По форме частиц белки делятся на фибриллярные и глобулярные.Фибрилярные белкиимею большое отношение длины к диаметру.Молекулы нитевидны и собраны в пучки, которые далее образуют волокна(фиброин шелка,кератин волос,коллаген кожи).Глобулярные(корпускулярные) белкиимеют невысокое отношение длины к диаметру,имею палочкообразную форму молекулы.

По отношению к условно выбранным растворителям среди белков различают протеиноиды,альбумины,глобулины,проламины. К протеиноидам относят белки не растворяющиеся в обычных растворителях:вода,солевые и спиртовые смеси(почти все фибриллярные белки).Однако в специфических агентах хорошо растворяются.К альбуминам относят белки,которые отлично растворяются в воде и крепких солевых растворах(молекулярная масса –40000–70000.К глобулинампринадлежат белки,не растворимые в воде, но растворимые в солевых растворах умеренных концентраций(мол.масса-150000).Альбумины и глобулины широко распространены в органах и тканях животных.Проламины растворяются в 60-80% водном растворе этилового спирта,белки растительного происхождения(белки пшеницы,рожи,риса).Протамины и гистоны. Протамины обладают выраженными основными свойствами, обусловленными наличием в их составе от 60 до 85% аргинина. Протамины хорошо растворимы в воде, изоэлектрическая точка их водных растворов находится в щелочной среде. Гистоны также являются белками основного характера. В их состав входят лизин и аргинин, содержание которых, однако, не превышает 20–30%. Молекулярная масса гистонов намного больше нижнего предела молекулярной массы белков.

10.Общие представления о ферментах. Химическая природа ферментов.Активный центр.Кофермент и простетические группы. Ферменты, или энзимы, представляют собой высокоспециализированный

класс веществ белковой природы, используемый живыми организмами для осуществления с высокой скоростью многих тысяч взаимосвязанных химических реакций. Ферменты обеспечивают осуществление таких важнейших процессов жизнедеятельности, как экспрессия (реализация) наследственной информации, биоэнергетика, синтез и распад биомолекул (обмен веществ).Ферменты чрезвычайно эффективны и проявляют в миллионы и миллиарды раз более высокую каталитическую активность в условиях умеренной температуры (температура тела), нор-

мального давления и в области близких к нейтральным значениям рН среды. Ферменты отличаются высокой специфичностью действия в отношении как химической природы субстрата, так и типа реакции, т.е. каждый

фермент катализирует в основном только определенную химическую реакцию.Ферменты не участвуют в образовании продуктов реакции и не расходуются.

Химическая природа ферментов. В зависимости от типа катализируемой реакции все ферменты подразделяются на 6 классов:

  • Ферменты, катализирующие окислительно-восстановительные реакции оксидоредуктазы;
  • Ферменты переноса различных группировок ( метильных, амино- и фосфогрупп и другие) — трансферазы.
  • Ферменты, осущевствляющие гидролиз химических связей — гидролазы
  • Ферменты не гидролитического отщепления от субстрата различных группировок (NH3, CO2,H2O и другие) — лиазы.
  • Ферменты, ускоряющие синтез связей в биологических молекулах при участии доноторов энергии, например АТФ, — лигазы.
  • Ферменты, катализирующие превращение изомеров друг в друга, — изомеразы.

ОКСИДОРЕДУКТАЗЫ – ферменты, катализирующие окислительно-восстановительные процессы в организме. Они осущевствляют перенос водорода и электронов и по своим привиальным названием известны как дегидрогеназы, оксидазы и пероксидазы. Эти ферменты отличаются тем, что имеют специфические коферменты и простетические группы. Их подразделяют на функциональные группы доноров, от которых они принимают водород или электроны, и акцепторов, на которые они их передают (на СН-ОН группу, СН- NH группу, C-NH группу и другие).ТРАНСФЕРАЗЫ – ферменты, переносящие атомные группы ( в зависимости от того, перенос какой группы они осуществляют, их соответственно называют). Среди них известны ферменты осуществляющие транспорт больших остатков, например гликозилтрансферазы и другие. Трансферазы благодаря разнообразию переносимых ими остатков принимают участие в промежуточном обмене веществ.ГИДРОЛАЗЫ – ферменты, катализирующие гидролитическое расщепление различных субстратов (при участии молекул воды). В зависимости от этого среди них различают эстеразы, расщипляющие сложноэфирную связь между карбоновыми кислотами (липаза) тиоловых эфиров, фосфоэфирную связь и так далее; гликозидазы, расщепляющие гликозидные связи, пептид — гидролазы, действует на пептидную связь и другие.ЛИАЗЫ. К этой группе относятся ферменты, способные отщеплять различные группы от субстрата не гидролитическим путём с образованием двойных связей или, напротив, присоединять группы к двойной связи. При расщеплении образуется Н2О или СО2 или большие остатки- например ацетил- СоА. Лиазы играют весьма важную роль в процессе обмена веществ.ИЗОМЕРАЗЫ – ферменты, катализирующие превращение изомерных форм друг в друга, то — есть осуществляющие внутримолекулярное превращение различных групп. К ним относятся не только ферменты, стимулирующие реакции взаимных переходов оптических и геометрических изомеров, но и такие, которые могут способствовать превращению альдоз в кетозы или перемещению эфирной связи и другие.ЛИГАЗЫ. Раньше эти ферменты не отделяли от лиаз, так как реакция последних часто идёт в двух направлениях, однако недавно было выяснено, что синтез и распад в большинстве случаев происходит под влиянием различных ферментов, и на этом основании выделен отдельный класс лигаз (синтетаз). Ферменты, обладающие двойным действием, получили название бифункциональных. Лигазы принимают участие в реакции соединения двух молекул, то есть синтетических процессах, сопровождающихся расщеплением макроэнергитических связей АТФ или других макроэргов.

Строение ферментов.Кофермент и простетические группы.Активный центр.По строению ферменты могут быть однокомпонентными, простыми белками, и двухкомпонентными, сложными белками. Во втором случае в составе фермента обнаруживается добавочная группа небелковой природы. Чаще всего добавочную группу, прочно связанную, не отделяемую от белковой части (апофермента), называют простетической группой; в отличие от этого добавочную группу, легко отделяющуюся от апофермента и способную к самостоятельному существованию, обычно именуют коферментом. Характерной особенностью двухкомпонентных ферментов является то, что ни белковая часть, ни добавочная группа в отдельности не обладают заметной каталитической активностью. Только их комплекс проявляет ферментативные свойства. Иначе обстоит дело у однокомпонентных ферментов, не имеющих добавочной группы, которая могла бы входить в непосредственный контакт с преобразуемым соединением . Эту функцию выполняет часть белковой молекулы, называемаякаталитическим центром. Предполагают, что каталитический центр однокомпонентного фермента представляет собой уникальное сочетание нескольких аминокислотных остатков, располагающихся в определенной части белковой молекулы.

Строение фермента.

Кроме каталитического центра, образованного сочетанием аминокислотных радикалов или присоединением кофермента, у ферментов различают еще два центра: субстратный и аллостерический. Под субстратным центром понимают участок молекулы фермента, ответственный за присоединение вещества (субстрата), подвергающегося ферментативному превращению. Часто этот участок называют ‘якорной площадкой’ фермента, где, как судно на якорь, становится субстрат. В реальных ферментах субстратный центр может совпадать (или перекрываться) с каталитическим центром. Более того, каталитический центр может окончательно формироваться в момент присоединения субстрата. Поэтому часто говорят об активном центре фермента, представляющем сочетание первого и второго. Активный центр у ферментов располагается на две щели при двухъядерной структуре, например у лизоцима и рибонуклеазы, или на дне глубокой впадины, как у химотрипсиногена. Аллостерический центр представляет собой участок молекулы фермента, в результате присоединения к которому определенного низкомолекулярного (а иногда — и высокомолекулярного) вещества изменяется третичная структура белковой молекулы. Вследствие этого изменяется конфигурация активного центра, сопровождающаяся либо увеличением, либо снижением каталитической активности фермента. Это явление лежит в основе так называемой аллостерической регуляциикаталитической активности ферментов.

Глобулярные белки

По особенностям структуры и форме молекулы белки делятся фибриллярные и глобулярные. Глобулярные белки – это простые соединения, форма которых стремится к сферической или эллипсоидной, такой внешний вид они получили благодаря свернутым в шарики полипептидным цепям.

Условно глобулярные белки можно разделить на истинные глобулины и псевдоглобулины. Истинные не являются растворимыми в воде, псевдоглобулины – частично растворимы.

К глобулярным белкам относятся практически все ферменты (около 2000), некоторые гормоны, например, инсулин, иммуноглобулины, антитела, а также некоторые другие белки, которые выполняют ряд вспомогательных, регуляторных и транспортных функций. Главное их функциональное отличие от фибриллярных белков заключается именно в динамичности. Именно благодаря тому, что данные белки обладают динамическим, а не статическим характером, так широк спектр выполняемых ими функций.

Существует ряд белков, которые относятся к промежуточному классу, то есть с одной стороны они рассматриваются как глобулярные, с другой – как фибриллярные. Примером такого белка может служить миозин, фибриоген крови и т.д. Как и глобулярные, так белки являются водорастворимыми, но состоят из палочкообразных структур, что является характерной особенностью фибриллярных.

Глобулярные белки обладают следующей структурой: первичная структура, то есть аминокислотная последовательность в цепи; вторичная – спирализация полипептидных цепей. Для различных белков характерна своя структура, которая определяет основные функции этих молекул.

Важнейшими представителями глобулярных белков являются глобулины, гистоны, глутелины, альбумины, протамины, проламины.

Глобулярные белки составляют более 90% всех белков организма, а также около половины плазмы и сыворотки крови. Во время протекания различных патологических процессов в организме (воспаления, злокачественные новообразования, инфекционные заболевания) количество глобулинов значительно повышается, это связано с выработкой антител.

Глобулярные белки

В отличие от нерастворимых фибриллярных белков растворимые белки имеют почти сферическую (глобулярную) форму. Глобулярным белкам свойственна высокоупорядоченная пространственная структура (конформация), которая способствует выполнению специфических биологических функций. В данном разделе разбираются особенности строения глобулярных белков на примере небольшого белка инсулина (см. сс. 82, 162).

А. Инсулин: первичная структура

Под первичной структурой понимают аминокислотную последовательность полипептидной цепи. Инсулин был первым белком, строение которого было установлено полностью еще в начале 50-х годов. Молекула функционально активного инсулина состоит их двух полипептидных цепей (А- и В-цепи), соединенных дисульфидными мостиками (на схеме А-цепь окрашена в светло-коричневый цвет, B-цепь — в темно-коричневый, дисульфидные мостики — в желтый). Дополнительный дисульфидный мостик локализован в пределах А-цепи. В поджелудочной железе, где происходит биосинтез инсулина, вначале синтезируется белок-предшественник — проинсулин, в котором С-концевой аминокислотный остаток В-цепи связан c Ν-концевым остатком А-цепи 33-членным фрагментом (на схеме не окрашен). После образования в проинсулине правильно замкнутых дисульфидных мостиков С-пептид отщепляется протеолитическими ферментами (см. с. 162).

Б. Вторичная структура

Вторичными структурами называются участки полипептидной цепи с упорядоченной конформацией, стабилизированной водородными связями (см. с. 74). В большинстве глобулярных белков присутствуют одновременно как α-спирали, так и β-складчатые листы. Кроме того, имеются участки с неупорядоченной структурой. Распространенным структурным элементом глобулярных белков является β-петля.

В молекуле инсулина участки, имеющие форму α-спирали, составляют 57%, 6% приходится на β-складчатую структуру, 10% построено в виде β-петли, оставшиеся 27% не имеют упорядоченной структуры.

В. Третичная структура

Трехмерные функционально активные конформации белков носят название третичной структуры. Третичную структуру белков исследуют главным образом методом кристаллографии. Этот трудоемкий метод основан на дифракции рентгеновских лучей на хорошо сформированных белковых кристаллах. Ha основании дифракционных картин рассчитывают распределение электронной плотности в кристалле, а по электронной плотности восстанавливают пространственную структуру молекул белка с атомным разрешением. В настоящее время определены трехмерные структуры сотен белков. Однако многие белки пока нельзя изучить этим методом, поскольку их не удается получить и виде хорошо сформированных кристаллов достаточно крупных размеров.

Анализ третичной структуры инсулина показал, что в Α-цепи имеются два коротких участка, а в В-цепи — один длинный участок, построенные в виде α-спирали (1). При этом N-конец А-цепи и С-конец В-цепи располагаются в непосредственной близости друг от друга. Единственная структура типа складчатого листа образуется в димере инсулина (см. Г, 4). Третичная структура проинсулина еще не установлена.

Г. Четвертичная структура

Белковые молекулы часто образуют симметрично построенные комплексы, стабилизированные за счет нековалентных взаимодействий. Такие комплексы называются олигомерами, а составные единицы комплексов (от 2 до 12) — субъединицами или мономерами. Инсулин также образует четвертичные структуры. В крови инсулин присутствует частично в виде димера (1). Димер имеет ось симметрии второго порядка. Кроме того, в поджелудочной железе в качестве запасной формы содержится гексамер инсулина (из 6 мономеров), стабилизированный ионами Zn2+(см с. 162). В образовании двух комплексов с катионом Zn2+ принимают участие остатки гистидина в положении B-10 всех шести субъединиц. На схеме 2 показано, что каждый октаэдрический комплекс включает один катион Zn2+, три остатка гистидина и три молекулы воды (см. также с. 83).

Смотреть что такое «Глобулярные белки» в других словарях:

  • ГЛОБУЛЯРНЫЕ БЕЛКИ — белки, в молекулах которых полипептидные цепи плотно свернуты в компактные шарообразные структуры глобулы. К глобулярным белкам относятся ферменты, антитела, некоторые гормоны и многие другие белки, выполняющие в клетках динамические функции. Ср … Большой Энциклопедический словарь

  • ГЛОБУЛЯРНЫЕ БЕЛКИ — белки, полипептидные цепи к рых свёрнуты в компактные сферические или эллипсоидные структуры (глобулы). Важнейшие представители Г. б. альбумины, глобулины, протамины, гистоны, проламины, глутелины. В отличие от фибриллярных белков, играющих гл.… … Биологический энциклопедический словарь

  • глобулярные белки — – белки, имеющие цилиндрическую или сферическую форму, хорошо растворимы в воде … Краткий словарь биохимических терминов

  • глобулярные белки — белки, в молекулах которых полипептидные цепи плотно свёрнуты в компактные шарообразные структуры глобулы. К глобулярным белкам относятся ферменты, антитела, некоторые гормоны и многие другие биологически активные белки. Ср. Фибриллярные белки.… … Энциклопедический словарь

  • ГЛОБУЛЯРНЫЕ БЕЛКИ — белки, в молекулах к рых полипептидные цепи плотно свёрнуты в компактные шарообразные структуры глобулы. К Г. б. относятся ферменты, антитела, нек рые гормоны и мн. др. биологически активные белки. Ср. Фибриллярные белки … Естествознание. Энциклопедический словарь

  • Глобулярные белки — (от лат. globulus шарик) кристаллические хорошо растворимые в воде или слабых растворах солей Белки; форма молекул у них близка к шарообразной (отношение осей сферы не превышает 5). Такое строение молекул обеспечивается спирализацией… … Большая советская энциклопедия

  • БЕЛКИ (органические соединения) — БЕЛКИ, высокомолекулярные органические соединения, биополимеры, построенные из 20 видов L a аминокислотных остатков, соединенных в определенной последовательности в длинные цепи. Молекулярная масса белков варьируется от 5 тыс. до 1 млн. Название… … Энциклопедический словарь

  • белки — 1. БЕЛКИ, ов; мн. (ед. белок, лка; м.). 1. Выпуклые непрозрачные оболочки глаз белого цвета. Б. у неё голубоватые. 2. Разг. сниж. О глазах. Вращать белками. ◁ Белочный, ая, ое. Б ые оболочки глаз. 2. БЕЛКИ, ов; мн. (ед. белок, лка; м.). Сложные… … Энциклопедический словарь

  • БЕЛКИ — природные высокомолекулярные органические соединения, построенные из остатков 20 аминокислот, которые соединены пептидными связями в длинные цепи. Молекулярная масса от нескольких тысяч до нескольких миллионов. В зависимости от формы белковой… … Большой Энциклопедический словарь

  • Белки — У этого термина существуют и другие значения, см. Белки (значения). Белки (протеины, полипептиды) высокомолекулярные органические вещества, состоящие из соединённых в цепочку пептидной связью альфа аминокислот. В живых организмах… … Википедия

Белки. Строение, уровни структурной организации. Биологическая роль. Особенности состава, структуры фибриллярных и глобулярных белков.

Белки: 20 мономен-х мол-л (ам. к-т) соед-ся не хаотично, а в строгой последовательности (соответствие с кодом белк-го синтеза).Белки представлены сложными полипептидами, в которых отдельные аминокислоты связаны друг с другом полипептидными связями, возникающими при взаимодействии карбоксил. Групп и аминных групп аминокислот.Н-связями). 3) Третичная стр-ра белка – пространственная ориентация полипептидной цепи в определенном объеме. Стабилизация за счет пепт-ых и дисульфидных связей и за счет нековал. св. ( Н, межмол-е силы Вандер-Вальса, гидрофобные и др.). 4) Четвертичная стр-ра белка – способ укладки в пространстве отдельных полипептидных цепей, обладающих одинаковой и разной первичной, вторичной и третичной структурой и формирование единого макромолекулярного образования в строении и функциональном отношении.Биологическая роль:

Особенности состава, структуры фибрил. и глобул. белков. Классификация белков по форме молекул на группы: глобулярные и фибриллярные.Глобулярные: белки, соотношение продольной и поперечной осей к-т не превышает 1:10, а чаще 1:3 или 1:4, т.е. белковая молекула имеет форму эллипса. Большинство индивидуальных белков человека относят к глобулярным белкам. Они имеют компактную структуру и многие из них, за счет удаления гидрофобных радикалов внутрь молекулы, хорошо растворимы в воде (ицоглобин, гемоглобин и т.д.).Фибриллярные: вытянутая, нитевидная структура, в которой соотношение продольных и поперечных осей составляют более 1:10. К фибриллярным белкам относят коллагены, эластин, кератин, выполняющие в организме человека структурную функцию, так же миозин – участ-ий в мышечном сокращении и фибрин – белок свертывающий системы крови.Коллаген: 3 полипептидные цепи, a-цепи по 1000 аминок-х остатков в каждой из 20a-цепей. Первичная структура необычна, т.к. каждая третья аминокислота – глицин, ¼ аминок-х остатков – пропин и 4 – гидроксипролин., около 11% аланин.

Полипептидная цепь коллагена – левозакрученная спиральная конформация, за счет пролина на 1 виток – 3 аминокислотных остатка, а не 3,6 – как у гобул. белков. Спираль стабилизирована не за счет водородных связей, а силами старического отталкивания пирролиновых колец в остатках пролина. Спираль более развернутая.

Эластин: более эластичен, кровеносные сосуды, легкие, связки и т.д.a кератин — a спираль (волосы).

5.Физико-химические свойства белков. Заряд, водная оболочка, денатурация белков, виды, факторы, вызывающие денатурацию белка. Понятие об электрофорезе и диализе.Индивидуальные белки различаются по своим физико-химическим св-м: форме молекул, молекул. массе, суммарному заряду мол-лы, соотношению полярных и неполярных групп на поверхности нативной молекулы белка, растворимости белка, а так же степени устойчивости к воздействию денатурирующих агентов.1) Различия белка по форме молекул: глобул-е и фибр-е. Глоб-е имеют более компактную структуру, их гидрофобные радикалы в большинстве своем спрятаны в гидрофобное ядро, и они значительно лучше растворимы в жидкостях организма, чем фибриллярные белки.2) Различия белка по молекулярной массе. Белки – высокомолекулярные соединения. Отличия по молекулярной массе от 6000 до 1000000 Д. и выше. Зависит от количества аминокислотных остатков в полипептидной цепи, а для олигомерных белков: — и от количества входящих в него протомеров (или субъед-ц).3) Суммарный заряд белка – белки содержат радикалы лизина, аргинина, гистндина, глутаминов и аспарагиновой к-т, содержат функциональные группы, способные к ионизации. И еще N и С – концы, также имеют a — амино и К- карбоксильные группы способные к ионизации. Степень ионизации зависит от рН среды. При рН = К все ионов. гр. – в иониз. состоянии. В кисл. ср. – подавл. диссоциации и уменьш. «-» заряда. В щелоч. – умен. «+» заряда.4) Соотношение полярных и неполярных групп на поверхности нативных молекул белка: на поверхности преобладают полярные радикалы, но соотношение полярных и неполярных различное.5) Растворимость белка. Зависит от формы, молекулярной массы, величины заряда, соотношения полярных и неполярных. Также зависит от растворителя. Денатурирующие агенты, присутствующие в растворе, так же снижают растворимость белков.Заряд: + и -, зависит от радикалов, ионизир. анионов, радикалов, от рН.Водная оболочка:

Денатурация белков: изменение общего плана уникальной структуры нативной молекулы белка, приводящие к потере характерных свойств (растворимости, электрофоретич. подвижности, биолог. нагрев. их растворов > 50-60 градусов).

Наиболее характерным признаком денатурации: редкое снижение или полная потеря белком его биологической активности (каталитич., т.е. ферментат., антиген. или гормональн.). При денатурации разрушаются в основном некова-е связи (водородные) и дисульфидные мостики и не затрагивают нептидные связи.

Ренатурация белка – полное восстановление исходной структуры и нативных свойств.

Электрофорез: метод основан на том, что при определенном значении рН и ионной силы р-ра белки двигаются в эл. поле со скоростью, пропорциональной их суммарному заряду. Электрофорез проводят на различных носителях: бумаге, крахм-геле и т.д.Диализ: метод, используют для очистки белка от низкомолекулярных примесей. Используют полупроницаемую мембрану (целлофан). Через нее приникают низкомолекулярные в-ва, а белки нет.

Физико-химические свойства белка:

— высокая вязкость растворов

— незначительная диффузия

— способность к набуханию

— оптическая активность

— подвижность в электрическом поле

— низк. осмот. давление и высок. онкотич. давление

— способность к поглощению УФ-лучей при 280 нм

— молекулярная масса белка от 6000 до 1000000

6.Третичная и четвертичная структура белка. Особенности связей, понятие о субъединицах и доменах. Факторы, влияющие на структуру белка. Шопероны и белки теплового шока.Третичная структура белка: трехмерная пространственная структура, образующаяся за счет взаимодействия между радикалами аминокислот. Связи:

— гидрофобные взаимодействия (min свободной энергии) они стремятся к объединению внутри глобулярных структур растворимых в воде белков. Формируется гидроф-е ядро по действием гидроф-го взаимодействия. — ионные и водородные связи – с водой на поверхности белковой молекулы. Внутри гидрофобного ядра. Ионные (между -, или +). Водородные между гидроф. незаряж. — ковалентные связи: дисульфидные Если полипептидная цепь будет содержать более 200 аминокислот, как правило, ее пространственная структура, сформирована в виде 2 или более доменов.

Домен – участок полипептидной цепи, который в процессе формирования пространственной структуры приобрел независимо от других участков той же цепи конформацию глобулярного белка.

Четвертичная структура белка: Белки состоящие из 2 и более полипептидных цепей. После формирования трехмерной структуры каждой полипептидной цепи они объединяются с помощью таких же слабых взаимодействий, которые участвовали в образовании третичной структуры: гидрофобных, ионных, водородных. Количество и взаиморасположение полипептидных цепей в пространстве называют «четвертичной структурой». Отдельные полипептидные цепи в таком белке носят название протомеров или субъединиц. Белок содержащий несколько протомеров – олигомерный.

Шопероны и белки теплового шока.

7. Окисление и биологическое окисление. Основные источники энергии и пути их аэробного и анаэробного окисления. Аккумуляторы энергии. Роль митохондрий.Окисление – переход е с одной орбитали на другую, более отдаленную от ядра (горение).Биологическое окисление — переход е от Н орг-го соединения на мол. О2 (совокупность р-й ок-я соответств. во всех живых клетках).Этапы: I превращение всех в Acetyl – CoA – энзим.II окисление энзима – ацетила, цикл трикарбоновых к-т сбор атомов Н. NaDH, FADH – витамины В2 активная форма.III так же в митохондриях дыхат-я цепочка.Аккумуляторы энергии:

Митохондрии: содержатся в цитоплазме клетки и представляют собой микроскопические палочковидные или иной формы образования (количество их сотни, тысячи). Внутреннее пространство митохондрий – непрерывная мембрана, внут-ее пространство – складки с матрик., который на 50% состоит из белка и имеет тонкую структуру.В митохондриях большое количество ферментов. Наружная мембрана митохондрии – перегородка, отделяющая рабочую часть от всего остального пространства клетки.

8. Дыхательная цепь. Основные ферментативные комплексы для транспорта протонов и е. Сопряжение и фосфолирования через протонный градиент.Дых-я цепь: Н от первичных доноров вводится в дых-е цепи с участием НАД и ФАД-зависимых дегидрогеназ. ФАД-зависимые дегидрогеназы переносят Н на убихинон (образуется убихинол gH2), а НАД-зависимые дегидрогеназы на НАД (образуется НАД – Н). Далее НАД-Н водород передается тоже на убихинон: эту р-ю катализирует НАД-Н-дегидрогиназа.

Затем в дыхат-й цепи пути е и протонов расходятся. Перенос е осуществляется с помощью циторомов (гемопротеинов).

Атом Fe может менять валентность. Е последовательно переходят через атомы Fe цитохромов, а затем поступают на цитохром. Кислород поступает в митохондрии из крови, связывается с атомом Fe в геле цитохрома в форме молекулы О2. Затем каждый из атомов молекулы О2 последовательно присоединяют по 2 е и по 2 протона, превращаясь в молекулу (Н2О).

В организме человека в результате тканевого дыхания образуется 300-400 мл Н2О за сутки.В молекуле АДФ только 1 высокоэнергетическая связь, в результате синтеза АТФ путем окислительного фосфорилирования добавляется еще одна, т.е. энергия окисления субстрата трансформируется в энергию химических связей в молекуле АТФ. Главный путь синтеза АТФ из АДФ – окисление фосфорилирование.Энергетическое сопряжение р-й переноса Н и синтез АТФ происходит при участии митохондриальной

9. Дыхательная цепь. Транспорт протонов и электронов ферментативными комплексами дыхательной цепи. Механизм ок-го фосфорилирования.. Дых-я цепь: Н от первичных доноров вводится в дых-е цепи с участием НАД и ФАД-зависимых дегидрогеназ. ФАД-зависимые дегидрогеназы переносят Н на убихинон (образуется убихинол gH2), а НАД-зависимые дегидрогеназы на НАД (образуется НАД – Н). Далее НАД-Н водород передается тоже на убихинон: эту р-ю катализирует НАД-Н-дегидрогиназа.Затем в дыхат-й цепи пути е и протонов расходятся. Перенос е осуществляется с помощью циторомов (гемопротеинов).Атом Fe может менять валентность. Е последовательно переходят через атомы Fe цитохромов, а затем поступают на цитохром. Кислород поступает в митохондрии из крови, связывается с атомом Fe в геле цитохрома в форме молекулы О2. Затем каждый из атомов молекулы О2 последовательно присоединяют по 2 е и по 2 протона, превращаясь в молекулу (Н2О).В организме человека в результате тканевого дыхания образуется 300-400 мл Н2О за сутки.В молекуле АДФ только 1 высокоэнергетическая связь, в результате синтеза АТФ путем окислительного фосфорилирования добавляется еще одна, т.е. энергия окисления субстрата трансформируется в энергию химических связей в молекуле АТФ. Главный путь синтеза АТФ из АДФ – окисление фосфорилирование.Энергетическое сопряжение р-й переноса Н и синтез АТФ происходит при участии митохондриальной мембраны и Н+ — АТФ синтетазы.Механизм ок-го фосфорилирования. Существует 3 гипотезы:I. Химическая гипотеза: энергия, выделяющаяся при переносе электронов по дых-й цепи, сначала используется для образования богатых энергией гипотетичесих соединений, а затем передается для синтеза АТФ и АДФ и неорганического фосфата. II. Механохимическая (конформационная) – взаимосвязь окисления и фосфорилирования обусловлена посредством конформационных изменений ферментов сопряжения. Энергия ок-я затрачивается на создание напряженной конформации фермента («сокращение» фермента). Последующее возвращение в исходную конформацию («расслабление») сопросождается использованием Е для синтеза высокоэнергетического соединения.

III. Химоосмотическая: дыхание и фосфолирование связаны между собой через электрохимический потенциал ионов водорода на митохондриальной мембране.

Предполагают, что тканевое дыхание заряжает митохондриальную мембрану, а окислительное фосфорилирование разряжает ее, используя энергию мембранных потенциала для синтеза АТФ.

Закладка Постоянная ссылка.

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *